|
Statements |
|
Reasons |
1. |
|
1. |
Given |
2. |
|
2. |
A parallelogram has 2 sets of opposite sides parallel. |
3. |
|
3. |
Opposite sides of a parallelogram are congruent. |
4. |
; ![QDrect44](QDrect44.png)
|
4. |
Reflexive property |
5. |
|
5. |
SSS-if 3 sides of one triangle are ![congruent](congruent.png) to the corres. parts of the other, the triangles are ![congruent](congruent.png) . |
6. |
∠DAB ∠CBA
∠ADC ∠BCD
|
6. |
CPCTC- corres. parts of ![congruent](congruent.png) triangles are ![congruent](congruent.png) . |
7. |
∠DAB supp ∠CBA ∠ADC supp ∠BCD
|
7. |
If 2 || lines are cut by a trans., the interior ∠s on same side of trans. are supplementary. |
8. |
m∠DAB + m∠CBA = 180
m∠ADC + m∠BCD = 180
|
8. |
Supp. ∠s are 2∠s the sum of whose measures is 180º. |
9. |
m∠DAB = m∠CBA
m∠ADC = m∠BCD |
9. |
![congruent](congruent.png) ∠s are ∠s of = measure. |
10. |
m∠DAB + m∠DAB = 180
m∠ADC + m∠ADC = 180 |
10. |
Substitution |
11. |
2m∠DAB = 180
2m∠ADC = 180 |
11. |
Addition |
12. |
m∠DAB = 90
m∠ADC = 90 |
12. |
Division |
13. |
∠DAB, ∠CBA right ∠s
∠ADC, ∠BCD right ∠s |
13. |
A rt. ∠ has a measure of 90º |
14. |
rectangle ABCD |
14. |
A rectangle is a parallelogram with four right angles. |